Motion Planning of Uncertain Ordinary Differential Equation Systems
نویسندگان
چکیده
This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and underactuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it is not accounted for in a given design. In this work uncertainties are modeled using generalized polynomial chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and underactuated systems, prescribes deterministic actuator inputs that yield uncertain state trajectories. The inverse dynamics formulation is the dual to that of forward dynamics, and is only applicable to fully actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to underactuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories that yield uncertain unactuated states and uncertain actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space. [DOI: 10.1115/1.4026994]
منابع مشابه
Comparison between linear and nonlinear models for surge motion of TLP
Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...
متن کاملA numerical method for solving uncertain differential equations
Uncertain differential equation is a type of differential equation driven by canonical process. In this paper, a concept of α-path to uncertain differential equation is first introduced, which is a type of deterministic function that solves an associate ordinary differential equation. Then, a numerical method is designed for solving uncertain differential equations, which essentially solves eac...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملVibration of Road Vehicles with Non linear Suspensions
In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...
متن کاملMotion Planning, Equivalence, Infinite Dimensional Systems
Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al., 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function y, the flat o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011